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a b s t r a c t

Sample Average Approximation (SAA) is used to approximately solve stochastic optimization problems.
In practice, SAA requires much fewer samples than predicted by existing theoretical bounds that
ensure the SAA solution is close to optimal. Here, we derive new sample-size bounds for SAA that, for
certain problems, are logarithmic (existing bounds are polynomial) in problem dimension. Notably,
our new bounds provide a theoretical explanation for the success of SAA for many capacity- or
budget-constrained optimization problems.
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1. Introduction

In this paper, we consider a generic stochastic optimization
roblem of the form

min
x∈X

{F (x) := Eξ f (x, ξ )}, (1)

here ξ ∈ Ξ is some random variable with known distribution
(·), and X ⊂ Rp is the (deterministic) feasible set. That is, we
onsider problems where stochasticity enters into the objective
unction and not the constraints. Note F (x∗) = Eξ f (x∗, ξ ) is the
corresponding optimal value, where

x∗
∈ argmin

x∈X
F (x)

is any optimal point. Such problems are often difficult to solve
because the expectation cannot be analytically computed except
in cases when the distribution P(·) or the function f (x, ξ ) have
very specific mathematical forms.

Sample Average Approximation (SAA) is a commonly-used
procedure for solving (1), and it works by approximating the
stochastic optimization problem using a deterministic optimiza-
tion problem that is easier to solve [5,11,12,28,30]. The idea of
SAA is to first generate an i.i.d. sample ξ1, . . . , ξn of the random
variable ξ , and then approximate the expectation Eξ f (x, ξ ) using
ts sample average

min
x∈X

{Fn(x) :=
1
n

n∑
i=1

f (x, ξi)}. (2)
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Note the objective function value of the original stochastic op-
timization problem (1) with the optimal solution of the SAA
problem (2) is given by F (x̂n) = Eξ f (x̂n, ξ ), where we have that

x̂n ∈ argmin
x∈X

Fn(x)

is any optimal point of the SAA problem (2). By definition of x∗

nd x̂n, we have that F (x∗) ≤ F (x̂n), and clearly we expect to see
hat F (x̂n) → F (x∗) almost surely as n → ∞ by an argument
sing the uniform law of large numbers.

.1. Sample bounds

Two practical considerations necessitate that the number of
amples n in the SAA problem (2) be as small as possible. First,
or many applications it is computationally costly to generate
ny single sample ξi of the random variable ξ . Second, for many
unctional forms of f (·, ·) it is the case that larger values of
require greater computation (e.g., more function evaluations,
ore gradient evaluations, etc.) in order to numerically solve the
AA problem (2).
Towards this goal, a now classical analysis [12,27,28] showed

hat in order to ensure(
F (x̂n) − F (x∗) ≤ δ

)
≥ 1 − α (3)

or any δ ∈ (0, 1] and α ∈ (0, 1], the number of samples n should
atisfy

≳
p
δ2

log
1
δ

+
1
δ2

log
1
α

. (4)

Here, we have used the notation x ≳ y of [16] which means
x ≥ cy for some constant c > 0 that is independent of p, δ, α and
which may depend polynomially upon other parameters of the
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ptimization problem (1). This bound says the required number
f samples depends polynomially on the dimension p of the
ecision variable x, and this bound is prohibitively restrictive
hen p is high-dimensional. In fact, applications of SAA for large
are common in many domains.
However, the experience of many practitioners has been that

much smaller number of samples n (as compared to the above
ound) is needed in order to ensure the SAA approximation is
lose to the true optimal value [11,17,25] — that is, the sample
ound (4) is often overly conservative. Motivated by this empir-
cal observation, there has been work on algorithmic approaches
hat iteratively or adaptively choose sample sizes in order to get
ood solutions with SAA with a small number of samples [23,24].

.2. Contributions and outline

We briefly outline our paper and highlight our main con-
ributions. To make our paper self-contained, we first provide
n Section 2 an overview of the stochastic process theory of
ademacher complexity [1,14]. We include this overview because
ademacher complexity theory is not a common subject within
he operations community. Our contributions begin in Section 3,
here we use this stochastic process theory to derive a new
ound for n to ensure (3). This bound depends in a non-trivial
ay upon the complex, stochastic interplay between X and f (·, ·).

In Section 4, we describe an algorithmic procedure that can be
used to numerically upper-bound this stochastic quantity for
some stochastic optimization problems (1). Then in Section 4 we
give examples of stochastic optimization problems where our ap-
proach yields explicit symbolic bounds on the number of samples
n needed. Notably, we show that single-index models with an ℓ1
constraint yields logarithmic bounds on the number of samples
needed. We conclude with Section 5, where we conduct numer-
ical experiments with the Markowitz portfolio selection problem
to demonstrate the significant improvement of our bound relative
to the classical bound (4).

1.3. Comparison to other sample bounds

One set of previous results [12,27,28] are based on an inter-
mediate bound: When X is a discrete set of points, then (3) holds
whenever n ≳ 1

δ2
log #X

α
, where #X is the cardinality of the finite

et X . Such a counting approach is effective for some problems:
or example, these ideas have been used to prove that nonconvex
both integer and continuous) optimization problems with an ℓ1
onstraint have a significantly reduced theoretical computational
omplexity [20].
However, the above counting bound obscures the complex

nterplay between the feasible set X and the mathematical struc-
ure of the function f (·, ·), which is what actually governs the
ehavior of the SAA solutions. More recent work [21,22] uses
mpirical process theory to derive sample bounds, which is better
ble to capture the interplay between the objective and the
easible set. This work uses a chaining argument to characterize
tochastic complexity, and this approach is in fact closely related
ur use of Rademacher theory that also characterizes stochastic
omplexity.
All sample bounds make assumptions about the continuity

f f (x, ξ ) and about the problem stochasticity. It is common
o assume f (x, ξ ) satisfies stochastic Lipschitz [6,12,27,28] or
tochastic Hölder continuity [21,22] conditions. It is also common
o assume stochastic regularity, such as having sub-Gaussian
istributions [6,12,27,28] or assuming that sample averages are
ell-behaved [21,22]. Past results find sample bounds that are

inear in the dimension p [6,12,27,28], or find sample bounds
or specific problems like lasso that have effective dimensions
232
that are smaller than p (and even logarithmic in p in the case of
lasso) [21,22].

In this paper, we assume deterministic Lipschitz continuity on
f (x, ξ ) and ensure stochastic regularity by requiring boundedness.
We show sample bounds that are logarithmic in dimension p
when the underlying stochastic optimization problem has ℓ1 or
nuclear norm constraints. The sample bounds of [6,12,27,28] are
linear in p because they consider generic feasible sets, whereas
the faster-than-linear bounds of [21,22] are calculated only for
specific problems because their general sample bounds require
knowing a difficult-to-compute quantity. However, we stress that
our logarithmic sample bounds do not arise because of stronger
assumptions, but are instead due to the geometry of the ℓ1 or nu-
clear norm constraints. We demonstrate this by providing in this
paper an alternative proof of logarithmic bounds under the more
general assumptions of [12,27,28]. Our stronger assumptions are
due to the proof technique we use. For instance, our boundedness
assumption can be relaxed using the results of [13] though we
do not consider this generalization here because it requires more
notation that hides the main ideas.

Another related line of work has explored sample bounds
under assumptions of sparsity. The work in [15,16] used sparsity-
based techniques to study the relationship between sample size
and SAA solution quality for the special case where the optimal
solution x∗ is sparse. (Here we define sparsity to include both
low cardinality vectors and low rank matrices.) The approach
of [15,16] adds a regularization term to the SAA (2), which in-
duces sparsity in the optimal solution x̂ to the SAA. The authors
prove that this leads the sample size n to have poly-logarithmic
dependence on the dimension p. However, there is an alternative
explanation for these derived bounds. Since the optimal solution
is known to be sparse, the effective feasible set X ′ (which incor-
porates the fact that x∗ is sparse) can be taken to be much smaller
than the stated feasible set X . We use this idea in Section 4
to derive similar logarithmic bounds for a similar (to the ones
studied by [15,16]) class of problems; these original bounds were
achieved using regularization and using a much more technically
difficult argument than the one we provide here.

2. Rademacher complexities

Before deriving our results, we need to provide a brief intro-
duction to the stochastic process theory of Rademacher complex-
ity [1,14], which is key to understanding our results. We provide
this introduction because these results and underlying method-
ology are not generally known within the operations and con-
trol communities, though they are generally well-known within
statistics and probability theory.

Let ϵ1, . . . , ϵn be i.i.d. Rademacher random variables, where
ϵ is a Rademacher random variable if its distribution is P(ϵ =

±1) =
1
2 ; and let f (x, ξ ) be the function from the objective

of (1). We define the Rademacher complexity of the function set
F := {f (x, ξ ) : x ∈ X } to be

Rn[f ] = Eξ

(
sup
x∈X

⏐⏐⏐1
n

n∑
i=1

ϵif (x, ξi)
⏐⏐⏐). (5)

Note the Rademacher complexity is often defined without an
absolute value when the set F is symmetric, and we can use an
equivalent definition without an absolute value

Rn[f ] = Eξ

(
sup

s∈±1,x∈X

1
n

n∑
i=1

ϵisf (x, ξi)
)

by defining the augmented function set F ′
:= {sf (x, ξ ) : s ∈

±1, x ∈ X }. Because both definitions are equivalent, we use
the representation (5) to maintain consistency. Without loss of
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enerality, we will make the following assumption for the re-
ainder of the paper:

ssumption. We have that −∆/2 ≤ f (x, ξ ) ≤ ∆/2 for all
x, ξ ) ∈ X × Ξ , for some finite constant ∆ ∈ R+.

This assumption is without loss of generality because if the
unction f (x, ξ ) is bounded on its domain (x, ξ ) ∈ X ×Ξ then we
can always define an equivalent stochastic optimization problem
by defining f ′(x, ξ ) = f (x, ξ ) − m − ∆/2 for some finite constant
m ∈ R such that the above is satisfied.

We would like to emphasize that the above boundedness
assumption can be relaxed by using recent generalizations of
McDiarmid’s inequality for unbounded random variables [13], but
we do not consider this generalization here because it adds con-
siderable notational complexity while obscuring the underlying
ideas. In this paper, we assume boundedness so as to most clearly
focus on the key underlying ideas.

The Rademacher complexity can be used to construct inequal-
ities that bound the probability of large deviations of certain
stochastic processes from their expectations. We begin with such
a result on deviation between the sample average (2) from the
objective of SAA with its expectation (1) in the objective of the
stochastic optimization problem. The result below is similar to
existing ones on concentration of measure [1,3,14], though our
result differs somewhat from the standard forms. Its proof uses
what is known as a symmetrization argument, and we repeat this
argument here to introduce it to readers who are unfamiliar with
it.

Proposition 1. If the assumption holds, then we have

P
(
sup
x∈X

⏐⏐⏐Fn(x) − F (x)
⏐⏐⏐ > t

)
≤

exp
(
−2n

( t − 2Rn[f ]
∆

)2)
. (6)

Proof. For notational convenience, we define

E = sup
x∈X

⏐⏐⏐1
n

n∑
i=1

f (x, ξi) − Eξ f (x, ξ )
⏐⏐⏐

Observe that Jensen’s inequality gives

E
(
E
)

≤ E
(
sup
x∈X

⏐⏐⏐1
n

n∑
i=1

f (x, ξi) − f (x, ξ ′

i )
⏐⏐⏐),

here ξi, ξ
′

i are i.i.d. But f (x, ξi)− f (x, ξ ′

i ) has a symmetric distri-
ution, and so its distribution is equivalent to the distribution of
i · (f (x, ξi)− f (x, ξ ′

i )) since the ϵi have a Rademacher distribution.
nd so we get(
E
)

≤ E
(
sup
x∈X

⏐⏐⏐1
n

n∑
i=1

ϵi(f (x, ξi) − f (x, ξ ′

i ))
⏐⏐⏐).

pplying the triangle inequality yields(
E
)

≤ 2E
(
sup
x∈X

⏐⏐⏐1
n

n∑
i=1

ϵif (x, ξi)
⏐⏐⏐). (7)

But observe that the right-hand side is 2Rn[f ]. Since the func-
tion f (·, ·) is bounded by assumption, we can use the standard
McDiarmid’s inequality [3,19] to get

P
(
E − E

(
E
)

> u
)

≤ exp
(
−2n

( u
∆

)2)
.

Combining this with (7) implies that

P
(
E − 2Rn[f ] > u

)
≤ exp

(
−2n

( u
∆

)2)
,

r with the substitution u = t − 2R [f ] that (6) holds. □
n

233
We also prove a nonstandard result (i.e., to the best of our
knowledge this result is not found in the literature on
Rademacher complexity) involving functions of (1).

Corollary 1. Let h : R → R be Lipschitz with constant L, and
suppose the assumption holds. Then we have

P
(
sup
x∈X

⏐⏐⏐h(Fn(x)) − h(F (x))
⏐⏐⏐ > t

)
≤

exp
(
−2n

( t − 2LRn[f ]
L∆

)2)
. (8)

Proof. We first note that Lipschitz continuity of h(·) implies
|h(Fn(x)) − h(F (x))| ≤ L|Fn(x) − F (x)|. This means by Proposition 1
e have(
sup
x∈X

⏐⏐⏐h(Fn(x)) − h(F (x))
⏐⏐⏐ > t

)
≤

P
(
sup
x∈X

L
⏐⏐⏐Fn(x) − F (x)

⏐⏐⏐ > t
)

≤

exp
(
−2n

( t/L − 2Rn[f ]
∆

)2)
.

The bound (8) now follows. □

It is pragmatically useful to interpret this corollary. In essence,
the result says that applying a Lipschitz function h(·) to (1)
is the same in terms of the concentration of measure as scal-
ing the Rademacher complexity by L to LRn[f ] and scaling the
assumption bound by L to L∆.

. New sample bounds

The above proposition can be used to construct new sample
ounds that ensure (3) holds for a generic stochastic optimization
roblem (1), and our next result gives an implicit formula for such
bound when Rn[f ] is strictly decreasing.

roposition 2. Suppose Rn[f ] is strictly decreasing in n. If the
ssumption holds and n ≥ N with

N = min
γ1,γ2

max{N1,N2}

N1 = (∆/γ1δ)2 log(2/α)/2
N2 = min{n : 2Rn[f ] ≤ γ2δ}

(9)

nd γ1, γ2 ∈ (0, 1) such that 2γ1 + γ2 = 1, then (3) holds.

roof. First observe that

(x̂n) − F (x∗) = F (x̂n) − Fn(x̂n) +

Fn(x̂n) − Fn(x∗) + Fn(x∗) − F (x∗).

ince x̂n minimizes the SAA, we have Fn(x̂n) ≤ Fn(x∗). Let γ1, γ2 ∈

0, 1) be such that 2γ1 + γ2 = 1, and note the union bound gives(
F (x̂n) − F (x∗) ≤ δ

)
≥ 1 +

−P
(
F (x̂n) − Fn(x̂n) > (γ1 + γ2)δ

)
+

−P
(
Fn(x∗) − F (x∗) > γ1δ

)
. (10)

ext, observe that Hoeffding’s inequality [3,7] implies(
Fn(x∗) − F (x∗) > t

)
≤ exp

(
−2N

( t
∆

)2)
since n ≥ N . Note we use Hoeffding’s inequality (i.e., not a
uniform convergence result) since x∗ is fixed. So if −2N ·(γ δ/∆)2
1



C. Bugg and A. Aswani Operations Research Letters 49 (2021) 231–238

=

c

C

n

t

P
t
r
N
h

N

O

4

a
p
(
b
W
b

4

e
b

O
h
t
p
b
e
c
s

a
v
R

R

w
t

log(α/2) then P(Fn(x∗) − F (x∗) > γ1δ) ≤ α/2. Now if γ2δ ≥

2Rn[f ], then by Proposition 1 we have

P
(
F (x̂n) − Fn(x̂n) > (γ1 + γ2)δ

)
≤ exp

(
−2n

(γ1δ

∆

)2)
.

Since n ≥ N , then if −2N · (γ1δ/∆)2 = log(α/2) then P(F (x̂n) −

Fn(x̂n) > (γ1 + γ2)δ) ≤ α/2. Combining the above with (10) gives
the desired result. □

The above result can be difficult to interpret because of the
implicit equation that specifies the minimum sample size N for
(3) to hold. So we next present a simplified result for the case
where the Rademacher complexity can be bounded in the form
Rn[f ] ≤

c(p)
√
n for some function c(p). Such a bound can be

onstructed for many cases [8–10,14,26].

orollary 2. If the assumption holds, Rn[f ] =
c(p)
√
n , and

≥
1
2

(4∆
δ

)2
log

( 2
α

)
+

(4c(p)
δ

)2

hen we have that (3) holds.

roof. We compute N2 = min{n : 2Rn[f ] ≤ γ2δ} under
he additional assumption. Specifically, 2c(p)/

√
N2 = γ2δ, or

ewritten that N2 = (2c(p)/γ2δ)2. Next consider an N ′
:= N1 +

2 ≥ N = minγ1,γ2 max{N1,N2}. Noting that γ2 = 1 − 2γ1, we
ave that
′
= (∆/γ1δ)2 log(2/α)/2 + (2c(p)/(1 − 2γ1)δ)2.

ur result follows by choosing γ1 = 1/4. □

. Bounds for problems

The prior two results bound the sample size n required to
chieve (3), but their use requires knowing the Rademacher com-
lexity Rn[f ] for a particular stochastic optimization problem
1). Here, we discuss how the Rademacher complexity can be
ounded for various classes of stochastic optimization problems.
e describe a Monte Carlo approach, and we also give explicit
ounds for specific problems.

.1. Monte Carlo bounds

The first class of problems we consider are those where there
xists a surrogate optimization problem that provides an upper
ound of the form

sup
x∈X

⏐⏐⏐1
n

n∑
i=1

ϵif (x, ξi)
⏐⏐⏐ ≤ max

y∈Y
G(y, {ϵi, ξi}ni=1). (11)

ur scenario is where the optimization problem on the right-
and side is easily-solvable. For example, when the problem on
he left-hand side can be represented as a mixed-integer linear
rogram (MILP) then the problem on the right-hand side could
e its continuous relaxation. Various approximation techniques
xist, and how different classes of problems for the left-hand side
an be upper-bounded by a surrogate problem are beyond the
cope of this present paper.
For this scenario, we define a Monte Carlo estimate. Let ξij

nd ϵij be i.i.d. samples of ξ and of the Rademacher random
ariable, respectively. Then a Monte Carlo estimate R̂[f ] of the
ademacher complexity is given by

n̂[f ] =
1
m

m∑
j=1

(
max
yj∈Y

G(yj, {ϵij, ξij}ni=1)
)

here m is the number of repetitions. Our next result concerns
he correctness of this Monte Carlo estimate.
234
Proposition 3. Suppose 0 ≤ G(y, {ϵi, ξi}n) ≤
σ
2 for all (y, {ϵi, ξi}n)

∈ Y × {±1, Ξ}
n, for some finite constant σ ∈ R+. Then we have

Rn[f ] ≤ R̂n[f ] + d with probability at least 1 − exp(−2m( d
σ
)2).

Proof. First note that Hoeffding’s inequality implies

P
(
R̂n[f ] < E

(
R̂n[f ]

)
− d

)
≤ exp

(
−2m

( d
σ

)2)
.

We next define the quantity

F =
1
m

m∑
j=1

(
sup
xj∈X

⏐⏐⏐1
n

n∑
i=1

ϵi,jf (xj, ξi,j)
⏐⏐⏐).

But by definition F ≤ R̂n[f ] and EF = Rn[f ] ≤ ER̂n[f ], and so
this means that we have

P
(
R̂n[f ] < Rn[f ] − d

)
≤ exp

(
−2m

( d
σ

)2)
.

The result follows by taking the complement of this. □

The above result says the Monte Carlo estimate R̂n[f ] upper
bounds the Rademacher complexity Rn[f ] with high probability.
The quality of the estimate depends upon two factors. The first is
how weak the upper bound (11) of the surrogate optimization
problem is. The second is how large m is, with larger values
corresponding to more accurate estimates. We reiterate that this
approach is only feasible when the surrogate problem is easily-
solvable, which enables the use of large values of m in computing
the estimate. We will provide a specific example in the next
section.

4.2. Explicit bounds

Next, we provide explicit bounds for specific classes of
stochastic optimization problems.

Proposition 4. Let g : R → R be Lipschitz with constant L, and
consider the stochastic optimization problem

min
x∈S

{
Eξ

(
g(ξ Tx)

) ⏐⏐⏐ ∥x∥1 ≤ λ

}
(12)

where S ⊆ Rp and maxξ∈Ξ ∥ξ∥∞ ≤ C < +∞. Then the
Rademacher complexity of the above problem is bounded byRn[f ] ≤

λLC
√
2 log 2p/n, and we need

n ≥

(4λLC
δ

)2
·

(
2 log

( 2
α

)
+ 2 log 2p

)
(13)

samples to ensure that (3) holds.

Proof. Let Λ = {x : ∥x∥1 ≤ λ}, and note that we have

max
x,y∈Λ

⏐⏐⏐g(ξ Tx) − g(ξ Ty)
⏐⏐⏐ ≤ Lmax

x,y∈Λ

⏐⏐⏐ξ T(x − y)
⏐⏐⏐ ≤ 2λLC

where the first inequality follows by Lipschitz continuity of g(·),
and the second inequality follows by Hölder’s inequality. This
means the assumption holds for ∆ = 2λLC . Next we bound the
Rademacher complexity of the problem (12), which is bounded
by L times the Rademacher complexity for the stochastic opti-
mization problem where g(·) is the identity function (see Lemma
26.9 in [26], which was originally Lemma 1.1 from the lecture
notes [10]; a slightly less general version of this result was first
shown by [14]). This second Rademacher complexity for when
g(·) is the identity was bounded in [9], and the final result is as
above. The sample bound (13) now follows from Corollary 2. □

The above single-index model with an ℓ1 constraint is a situ-
ation where we need logarithmic in p samples for SAA, which is

a substantial improvement over the standard bound (4) showed
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y [12,27,28] that is polynomial in p. Continuity is needed for
ogarithmic bounds. For instance, Proposition 2 of [6] gives an
xample of a particular f (x, ξ ) with an ℓ2 constraint X = {x :

∥x∥2 ≤ λ}, where F (x) is Lipschitz and linear bounds are necessary
for a small optimality gap. By defining g(x) such that g(0) = 0 and
g(x) = x · ∥x∥1/∥x∥2 otherwise, we can thus use that particular
f (·, ·) to construct an example f (g(x), ξ ) with an ℓ1 constraint
X = {x : ∥x∥1 ≤ λ} where F (g(x)) is not Lipschitz and a linear
number of samples is necessary for a small gap.

Next we consider a class of problems similar to [16], and
we show a similar logarithmic in p bound but without using
regularization and with a much simpler technical argument.

Corollary 3. Let g : R → R be Lipschitz with constant L, and
consider the stochastic optimization problem

min
x∈X

Eξ

(
g(ξ Tx)

)
(14)

where maxξ∈Ξ ∥ξ∥∞ ≤ C < +∞. Suppose there is an optimal
solution x∗ to (14) that is sparse, meaning that s :=

∑p
i=1 1(x

∗

i ̸= 0)
is small with ∥x∗

∥∞ ≤ µ < +∞. Then

n ≥

(4µsLC
δ

)2
·

(
2 log

( 2
α

)
+ 2 log 2p

)
samples ensures that (3) holds when x̂ is the SAA solution to the
tochastic optimization problem

min
x∈X

{
Eξ

(
g(ξ Tx)

) ⏐⏐⏐ ∥x∥1 ≤ µs
}
. (15)

roof. Note that ∥x∗
∥1 ≤ µs by assumption. Thus x∗ is an optimal

solution for both (15) and (14), and both problems have the
same minimum value F (x∗). The result now follows by applying
Proposition 4 to (15). □

Last we note that our sample bound can be improved when
the problem has nonnegativity constraints.

Proposition 5. Let g : R → R be Lipschitz with constant L, and
consider the stochastic optimization problem

min
x∈S

{
Eξ

(
g(ξ Tx)

) ⏐⏐⏐ x ≥ 0, ∥x∥1 ≤ λ

}
where S ⊆ Rp and maxξ∈Ξ ∥ξ∥∞ ≤ C < +∞. Then the
Rademacher complexity of the above problem is bounded byRn[f ] ≤

λLC
√
log p/n, and we need

n ≥

(4λLC
δ

)2
·

(1
2
log

( 2
α

)
+ log p

)
amples to ensure that (3) holds.

The proof is omitted because it is essentially identical to that
f Proposition 4, the main difference being a different bound
rom [9] is used for the Rademacher complexity.

.3. Explicit bounds for matrix optimization

Next, we provide bounds for specific classes of stochastic
atrix optimization problems. We use ∥X∥∗ to denote the nuclear
orm of X ∈ Rp×q, and ∥ξ∥2 in this section denotes the spectral
orm of the random matrix ξ ∈ Ξ ⊂ Rp×q.

Proposition 6. Let g : R → R be Lipschitz with constant L, and
consider the stochastic optimization problem

min
{
Eξ

(
g(tr(ξ TX))

) ⏐⏐⏐ ∥X∥∗ ≤ λ

}

X∈S
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where S ⊆ Rp×q and maxξ∈Ξ ∥ξ∥2 ≤ C < +∞. Then the
Rademacher complexity of the above stochastic optimization prob-
lem is bounded by Rn[f ] ≤ λLC

√
3 log(min{p, q})/n, and we

need

n ≥

(4λLC
δ

)2
·

(
2 log

( 2
α

)
+ 3 log

(
min{p, q}

))
samples to ensure that (3) holds.

Proof. Let Λ = {X : ∥X∥∗ ≤ λ}, and note that we have

max
X,Y∈Λ

⏐⏐⏐g(tr(ξ TX)) − g(tr(ξ TY ))
⏐⏐⏐

≤ L max
X,Y∈Λ

⏐⏐⏐tr(ξ T(X − Y ))
⏐⏐⏐

≤ L max
X,Y∈Λ

∥ξ∥2∥X − Y∥∗

≤ 2λLC

where the first inequality follows by Lipschitz continuity of g(·),
and the second inequality follows by Hölder’s inequality for uni-
tarily invariant norms [2]. This means the assumption holds for
∆ = 2λLC . Next we bound the Rademacher complexity of
(12): Observe that this is bounded by L times the Rademacher
complexity for when the function g(·) is the identity function
(see Lemma 26.9 in [26] and Lemma 1.1 in [10]). The Rademacher
complexity for when g(·) is the identity was bounded in [8], and
the final result is as above. The sample bound (13) now follows
from Corollary 2. □

The above single-index model with a nuclear norm constraint
needs logarithmic in min{p, q} samples for SAA. This is a substan-
tial improvement over the standard bound (4) showed by [12,27,
28] that in this case is

n ≳
pq
δ2

log
1
δ

+
1
δ2

log
1
α

.

hich is polynomial in p and q.
Next we consider a class of problems similar to [15], and

e show a logarithmic in min{p, q} bound but without using
egularization and with a much simpler technical argument.

orollary 4. Let g : R → R be Lipschitz with constant L, and
onsider the stochastic optimization problem

min
X∈X

Eξ

(
g(tr(ξ TX))

)
(16)

here X ⊆ Rp×q andmaxξ∈Ξ ∥ξ∥2 ≤ C < +∞. Suppose there is an
ptimal solution X∗ to (16) that is low rank, meaning r := rank(X∗)

is small with ∥X∗
∥2 ≤ µ < +∞. Then we need

n ≥

(4µrLC
δ

)2
·

(
2 log

( 2
α

)
+ 3 log

(
min{p, q}

))
samples to ensure that (3) holds when X̂ is the SAA solution to the
stochastic optimization problem

min
x∈X

{
Eξ

(
g(tr(ξ TX))

) ⏐⏐⏐ ∥X∥∗ ≤ µr
}
. (17)

Proof. Note that ∥X∗
∥∗ ≤ µr by assumption. Thus X∗ is an opti-

mal solution for both (17) and (16), and both problems have the
same minimum value F (x∗). The result now follows by applying
Proposition 6 to (17). □

4.4. Alternative proof

We conclude this section by considering the more general
setting of the past bound from [28]. We give an alternative proof
of our result for problems with an ℓ1 constraint, which modifies
the proof of Theorem 5.18 in [28].
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roposition 7. Consider the stochastic optimization

min
x∈S

{
Eξ f (x, ξ )

⏐⏐⏐ ∥x∥1 ≤ λ

}
(18)

where S ⊆ Rp. Let Λ = {x ∈ S : ∥x∥1 ≤ λ}, and suppose
two assumptions hold. First, for any x′, x ∈ Λ there exists constant
σx′,x > 0 such that the moment-generating function Mx′,x(t) =

Eξ exp(tYx′,x) of random variable Yx′,x = [f (x′, ξ )−F (x′)]−[f (x, ξ )−
F (x)] satisfies Mx′,x(t) ≤ exp(σ 2

x′,xt
2/2) for all t ∈ R. Second, there

exists a (measurable) function κ : Ξ → R+ such that its moment-
generating function Mκ (t) is finite valued for all t in a neighborhood
of zero and |f (x′, ξ ) − f (x, ξ )| ≤ κ(ξ )∥x′

−x∥ for almost everywhere
ξ ∈ Ξ and all x′, x ∈ Λ. Then (3) holds whenever

n ≥
8σ 2

δ2
· log

64λ2L2p
δ2

+

(8σ 2

δ2
+

1
β

)
· log

( 2
α

)
, (19)

where σ 2
= supx′,x∈Λ(σx′,x)2, L = Eξκ(ξ ), and we have that

β = supt∈R
(
2Lt − logMκ (t)

)
.

Proof. We first show there exists a set V = {x1, . . . , xk} with
log k ≤ 32(λL/δ)2 log p so maxx∈Λ minx′∈X ∥x − x′

∥ ≤ δ/8L. To
show this, we use the Sudakov minoration [29] that says

√
log k ≤

E(supx∈Λ gTx)/2(δ/8L), where g ∈ Rp is a vector whose entries
re i.i.d. Gaussian random variables with zero mean and unit
ariance. Hölder’s inequality and the symmetry of Λ imply that
e have E(supx∈Λ gTx) ≤ E(supx∈Λ ∥x∥1 · maxj |gj|) ≤ λ

√
2 log p

where we have used the basic bound E(maxj |gj|) ≤
√
2 log p

for gj that are the jth entry of the vector g . Thus Sudakov’s
minoration gives that

√
log k ≤ λ

√
2 log p/2(δ/8L). Rearranging

his inequality gives the desired bound log k ≤ 32(λL/δ)2 log p.
Next choose any x∗ that minimizes (18) and consider the mod-

fied stochastic optimization problem minx∈V∪{x∗} F (x). Let x∗,v
∈

argminx∈V∪{x∗} F (x), and define the solution x̂v
n ∈ argminx∈V∪{x∗}

n(x). Note Fn(x̂n) ≤ Fn(x̂v
n) since V∪{x∗

} ⊆ Λ. The second assump-
ion implies that with probability one we have |Fn(x′) − Fn(x)| ≤

ˆn∥x′
− x∥ for all x′, x ∈ Λ, where κ̂n =

1
n

∑n
i=1 κ(ξi). By

onstruction of V , there exists x′ with ∥x′
− x̂n∥ ≤ δ/8L. Thus

Fn(x′) ≤ Fn(x̂n) + κ̂n · (δ/8L) ≤ Fn(x̂v
n) + κ̂n · (δ/8L).

We continue our analysis under the event that κ̂n ≤ 2L. Here,
n(x′) ≤ Fn(x̂v

n)+δ/4. Thus Theorem 5.17 of [28] says that P
(
F (x′)−

(x∗,v) ≤ 3δ/4
)

≥ 1 − α/2 for n ≥ (8σ 2/δ2) × log(2(k + 1)/α).
But F (x∗,v) = F (x∗) by construction of the modified stochastic
optimization, and also F (x̂n) ≤ F (x′) + L · (δ/8L) since the second
assumption implies that |F (x′) − F (x)| ≤ L∥x′

−x∥ for all x′, x ∈ Λ.
This means we have F (x̂n) ≤ F (x∗)+3δ/4+δ/8 with probability at
least 1−α/2. Note the Chernoff bound implies that κ̂n ≤ 2L with
probability at least 1−exp(−nβ) = 1−α/2 when n ≥ log(2/α)/β .
Thus (3) holds when (19) holds. □

The significance of this alternative proof under more general
conditions is that it shows that the logarithmic sample bounds
arise because of the properties of ℓ1 constraint. (A similar alter-
native proof of logarithmic sample bounds under more general
conditions can also be constructed for nuclear norm constraints.)
The boundedness and Lipschitz continuity assumptions we make
in previous subsections are due to the technical details of the
proof technique that we use.

5. Numerical experiments

Consider a scenario where we would like to choose a portfolio
that allocates investments into some combination of p risky assets
and 1 risk-free asset, while considering a tradeoff between maxi-
mizing the expected return of the portfolio and the risk tolerance
of the investor. The Markowitz portfolio selection model [4,18]

p
is a simple framework to pose such a problem. Let ξ ∈ R be a
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random variable of the returns from the p risky assets, and define
µ = Eξ ξ and Σ = Eξ ((ξ − µ)(ξ − µ)T). Then one formulation of
the problem involves solving a convex quadratic program

min
x∈Rp

{
xTΣx − γ · xT(µ − r1)

⏐⏐⏐ x ≥ 0, ∥x∥1 ≤ 1
}

(20)

where: r is the rate of return for the risk-free asset, γ > 0 trades-
off between the returns and risk of the portfolio, and each entry
of the vector x gives the fraction of the portfolio allocated to the
p risky assets; hence 1 −

∑p
i=1 xi is the fraction of the portfolio

allocated to the risk-free asset.

5.1. Sample bounds

To bound the Rademacher complexity of (20), we can use an
existing calculus for Rademacher complexity [1,14].

Proposition 8. If ∥ξ∥∞ ≤ s, then the Rademacher complexity
for (20) is bounded by Rn[f ] ≤ (4s2 + γ s)

√
log p/n. Also, the

assumption is satisfied for ∆ = 4s2 + γ s.

Proof. Using the identity Σ = Eξ (ξξ T) − µµT, we have xTΣx −

γ · (µ− r1)Tx = Eξ

(
(ξ Tx)2 −γ · ξ Tx

)
−

(
Eξ

(
ξ Tx

))2
+γ · r1Tx. Thus

e can rewrite (20) as

min Eξ

(
(ξ Tx)2 − γ · ξ Tx

)
−

(
Eξ

(
ξ Tx

))2
+ γ · r1Tx

s.t. x ≥ 0, ∥x∥1 ≤ 1

The above is useful for bounding Rademacher complexity. De-
terministic terms have a Rademacher complexity of zero, and
the Rademacher complexity for the sum of problems is upper-
bounded by the sum of the individual Rademacher complexi-
ties [1,14]. So we conclude the proof by bounding the
Rademacher complexity of three problems: First, consider the
problem min{Eξ ((ξ Tx)2) | x ≥ 0, ∥x∥1 ≤ 1}. Since ∥ξ∥∞ ≤ s,
Proposition 5 says Rn[f1] ≤ 2s2

√
log p/n with ∆1 = 2s2, since

(u) = u2 is Lipschitz with L = 2s when u ∈ [−s, s]. Second, con-
ider the optimization problem min{−(Eξ (ξ Tx))2 | x ≥ 0, ∥x∥1 ≤

1}. Proposition 5 with Corollary 1 gives Rn[f2] ≤ 2s2
√
log p/n

ith ∆2 = 2s2, since h(u) = u2 is Lipschitz with L = 2s when
∈ [−s, s]. Third, consider the problem min{Eξ (−γ · ξ Tx) | x ≥

, ∥x∥1 ≤ 1}. Proposition 5 gives Rn[f3] ≤ γ s
√
log p/n with

∆3 = γ s. The result follows by noting that Rn[f ] ≤ Rn[f1] +

Rn[f2] + Rn[f3] and that ∆ ≤ ∆1 + ∆2 + ∆3. □

We can compare various sample bounds on n to ensure (3)
olds. We begin by calculating the specific previous bound from
28]: Hoeffding’s lemma [7] bounds variance of (20) by ∆2

4 for
the ∆ from Proposition 8. Moreover, the Lipschitz constant of
the objective (without expectation) in (20) is L ≤

√
p(4s2 + γ s).

Consequently, the previous bound from [28] is

n ≥ 2 ·

(4s2 + γ s
δ

)2
·

(
p log

8
√
p(4s2 + γ s)

δ
+ log

2
α

)
. (21)

In contrast, combining Proposition 8 with Corollary 2 gives our
bound to be

n ≥

(16s2 + 4γ s
δ

)2
·

(1
2
log

( 2
α

)
+ log p

)
. (22)

he difference is our bound (22) is logarithmic in p whereas the
ast bound (21) is quasi-linear in p.

.2. Results of experiment

To experimentally compare the above bounds with the actual
AA performance, we consider this next scenario: We assume
eturns for the assets are distributed as

∼ U1(−
s
,
s
)1p + Up(−

s
,
s
),
2 2 2 2
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Fig. 1. Comparison of 95% upper confidence bound of SAA solution gap (solid blue) with bounds on 95% upper confidence bound gap predicted by [12,27,28]
dash-dotted red), our Proposition 2 (dashed orange), and our Corollary 2 (dotted green). The left shows results on a log–log scale, and the right shows results
excluding most of the [12,27,28] bound) on a semi-log scale. In both plots, the x-axis is the dimension p of the decision variable, and the y-axis is the 95% upper
confidence bound gap.
where Uk(l, u) is a k-dimensional uniform distribution with the
support of the distribution in each dimension of [l, u], and 1p
is a p-dimensional vector of ones. The interpretation is that the
first term U1(− s

2 ,
s
2 )1p describes a strongly correlated component

f the returns, while the second term Up(− s
2 ,

s
2 ) describes an

ndependent component of the returns. We also assume γ = 1,
= 1, and r = 0.
To compare the bounds with the actual SAA solution gaps, we

sed n = 50 and computed the 95% upper confidence bound of
he SAA solution gap by solving SAA a total of 10,000 times each
or different values of p. The 95% upper confidence bound is the
mallest value of δ for α = 0.05 in (3). We also compute the
mallest value of δ for α = 0.05 for the different bounds available
o us. Specifically, we compare the actual upper confidence bound
o

• bound (21), which is the past bound from [12,27,28]
• bound (9), which is the implicit sample bound from our

Proposition 2
• bound (22), which is the simplified sample bound from our

Corollary 2 for when limn δ = 0

he results are shown in Fig. 1. The past bound from [12,27,28]
rows much faster than the actual SAA solution gap. In con-
rast, our bound (9) from Proposition 2 visually matches the
rowth rate of the actual SAA solution gap. Our bound (22),
hich is the simplified bound using Corollary 2, grows faster
han the actual SAA solution gap; however, the bound (22) is
reasonably accurate approximation to (9) from Proposition 2.
his suggests the simplified bound of Corollary 2 is useful for
ualitative understanding of scaling, whereas the more accurate
ound of Proposition 2 is more useful for determining necessary
ample sizes for SAA.

cknowledgments

The authors would like to thank Deepak Rajan for providing
seful discussions and suggestions about this work. This ma-
erial is based upon work supported by the National Science
oundation, USA under Grant CMMI-1847666.

eferences

[1] P.L. Bartlett, S. Mendelson, Rademacher and Gaussian complexities: Risk
bounds and structural results, J. Mach. Learn. Res. 3 (2002) 463–482.

[2] R. Bhatia, Matrix Analysis, Springer-Verlag, 1997.
[3] S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A

Nonasymptotic Theory of Independence, Oxford University Press, 2013.
237
[4] B. Bruder, N. Gaussel, J.C. Richard, T. Roncalli, Regularization of portfolio
allocation, 2013, Available at SSRN 2767358.

[5] J. Dupacová, R. Wets, Asymptotic behavior of statistical estimators and
of optimal solutions of stochastic optimization problems, Ann. Statist. 16
(1988) 1517–1549.

[6] V. Guigues, A. Juditsky, A. Nemirovski, Non-asymptotic confidence bounds
for the optimal value of a stochastic program, Optim. Methods Softw. 32
(2017) 1033–1058.

[7] W. Hoeffding, Probability inequalities for sums of bounded random
variables, JASA 58 (1963) 13–30.

[8] S.M. Kakade, S. Shalev-Shwartz, A. Tewari, Regularization techniques for
learning with matrices, J. Mach. Learn. Res. 13 (2012) 1865–1890.

[9] S.M. Kakade, K. Sridharan, A. Tewari, On the complexity of linear predic-
tion: Risk bounds, margin bounds, and regularization, in: NeurIPS, 2009,
pp. 793–800.

[10] S. Kakade, A. Tewari, Rademacher composition and linear prediction, in:
Lecture 17 notes for ‘CMSC 35900 Learning Theory’, 2008.

[11] S. Kim, R. Pasupathy, S.G. Henderson, A guide to sample average approx-
imation, in: Handbook of Simulation Optimization, Springer, 2015, pp.
207–243.

[12] A.J. Kleywegt, A. Shapiro, T. Homem-de Mello, The sample average ap-
proximation method for stochastic discrete optimization, SIAM J. Optim.
12 (2002) 479–502.

[13] A. Kontorovich, Concentration in unbounded metric spaces and algorithmic
stability, in: ICML, 2014, pp. 28–36.

[14] M. Ledoux, M. Talagrand, Probability in Banach Spaces: Isoperimetry and
Processes, Springer-Verlag, 1991.

[15] H. Liu, C. Hernandez, H.Y. Lee, Regularized sample average approximation
for high-dimensional stochastic optimization under low-rankness, 2019,
arXiv preprint arXiv:1904.03453.

[16] H. Liu, X. Wang, T. Yao, R. Li, Y. Ye, Sample average approximation with
sparsity-inducing penalty for high-dimensional stochastic programming,
Math. Program. (2018) 1–40.

[17] J. Luedtke, S. Ahmed, A sample approximation approach for optimization
with probabilistic constraints, SIAM J. Optim. 19 (2008) 674–699.

[18] H. Markowitz, Portfolio selection, J. Finance 7 (1952) 77–91.
[19] C. McDiarmid, On the method of bounded differences, Surv. Combin. 141

(1989) 148–188.
[20] Y. Mintz, A. Aswani, Polynomial-time approximation for nonconvex op-

timization problems with an L1-constraint, in: IEEE CDC, IEEE, 2017, pp.
682–687.

[21] R.I. Oliveira, P. Thompson, Sample average approximation with heavier
tails i: non-asymptotic bounds with weak assumptions and stochastic
constraints, 2017a, arXiv:1705.00822.

[22] R.I. Oliveira, P. Thompson, Sample average approximation with heavier tails
ii: localization in stochastic convex optimization and persistence results for
the lasso, 2017b, arXiv:1711.04734.

[23] J.O. Royset, On sample size control in sample average approximations
for solving smooth stochastic programs, Comput. Optim. Appl. 55 (2013)
265–309.

[24] J.O. Royset, R. Szechtman, Optimal budget allocation for sample average
approximation, Oper. Res. 61 (2013) 762–776.

[25] A. Ruszczyński, A. Shapiro, Stochastic programming, in: Handbooks in
Operations Research and Management Science, Elsevier, 2003.

http://refhub.elsevier.com/S0167-6377(21)00016-X/sb1
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb1
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb1
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb2
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb3
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb3
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb3
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb4
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb4
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb4
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb5
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb5
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb5
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb5
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb5
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb6
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb6
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb6
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb6
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb6
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb7
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb7
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb7
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb8
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb8
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb8
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb9
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb9
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb9
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb9
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb9
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb10
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb10
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb10
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb11
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb11
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb11
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb11
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb11
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb12
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb12
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb12
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb12
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb12
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb13
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb13
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb13
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb14
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb14
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb14
http://arxiv.org/abs/1904.03453
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb16
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb16
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb16
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb16
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb16
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb17
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb17
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb17
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb18
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb19
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb19
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb19
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb20
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb20
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb20
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb20
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb20
http://arxiv.org/abs/1705.00822
http://arxiv.org/abs/1711.04734
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb23
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb23
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb23
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb23
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb23
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb24
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb24
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb24
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb25
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb25
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb25


C. Bugg and A. Aswani Operations Research Letters 49 (2021) 231–238
[26] S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms, Cambridge University Press, 2014.

[27] A. Shapiro, Monte Carlo sampling methods, in: Handbooks in Operations
Research and Management Science, Vol. 10, 2003, pp. 353–425.

[28] A. Shapiro, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic
Programming: Modeling and Theory, SIAM, 2009.
238
[29] V. Sudakov, Gaussian random processes and solid angle measures in
Hilbert space, Dokl. Akad. Nauk SSSR 197 (1971) 43–45.

[30] B. Verweij, S. Ahmed, A.J. Kleywegt, G. Nemhauser, A. Shapiro, The sample
average approximation method applied to stochastic routing problems: a
computational study, Comput. Optim. Appl. 24 (2003) 289–333.

http://refhub.elsevier.com/S0167-6377(21)00016-X/sb26
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb26
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb26
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb27
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb27
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb27
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb28
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb28
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb28
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb29
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb29
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb29
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb30
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb30
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb30
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb30
http://refhub.elsevier.com/S0167-6377(21)00016-X/sb30

	Logarithmic sample bounds for Sample Average Approximation with capacity- or budget-constraints
	Introduction
	Sample bounds
	Contributions and outline
	Comparison to other sample bounds

	Rademacher complexities
	New sample bounds
	Bounds for problems
	Monte Carlo bounds
	Explicit bounds
	Explicit bounds for matrix optimization
	Alternative proof

	Numerical experiments
	Sample bounds
	Results of experiment

	Acknowledgments
	References


